Mediation and Moderation Analyses with R

Stephen D. Short

Saturday, February 28, 2015
Overview

- Mediation analysis in R
 - Simple mediation model example
 - Multiple mediator model example
- Moderation analysis in R
 - Continuous moderator model example
 - Simple slope figures
- Tips

For slides and code please visit http://stephendshort.wix.com/psyc
Mediation

- Occurs when the effect of one variable (X) on another variable (Y) “passes through” a third variable (M)

\[M = a_0 + aX + e_M \]

\[Y = b_0 + bM + c'X + e_y \]

- The indirect effect is quantified as \(ab \)
Notable Mediation Packages Available in R

- R packages for mediation analyses
 - BayesMed (Nuijten, Wetzels, Matzke, Dolan, & Wagenmakers, 2015)
 - bmem (Zhang & Wang, 2011)
 - mediation (Tingley, Yamamoto, Hirose, Keele, & Imai, 2014)
 - powerMediation (Qui, 2015)
 - RMediation (Tofighi & MacKinnon, 2010)

- Functions within other packages
 - mediate () in psych package (Revelle, 2012)
 - mediation () in MBESS package (Kelley & Lai, 2012)

Note. This is not a complete list, but merely suggestions for social science researchers
Example 1: Data

- From Pollack, VanEpps, & Hayes (2012)
 - Also example data in Hayes (2013) mediation text
- Does economic stress (X) lead to a desire to withdraw from small business (Y), as a result of negative affect (M)?
- $N = 262$ small business owners
 - X = estress (1-7 Likert scale)
 - M = affect (1-5 Likert scale)
 - Y = withdraw (1-7 Likert scale)
- Example data available from www.afhayes.com
Example 1: Simple Mediation with MBESS

- First, install MBESS

```r
# Note. # sign used to comment code
install.packages("MBESS")
# You only need to install the package once on your computer
```

- Load MBESS. You’ll need to do this each new R session

```r
library(MBESS)
```

- Import your data

```r
estressData <- read.table("estress.csv", sep="", header=T)
```

- MBESS can also analyze summary statistics (e.g., covariance matrix)
Example 1: Simple Mediation with MBESS

- Some of the mediation() arguments

```r
mediation(x, mediator, dv, conf.level = 0.95,
    bootstrap = FALSE, B = 1000,
    which.boot = "both")
```

- Tip: First run with a small amount of replications to check your code.

```r
results1 <- mediation(estressData$estress,
    estressData$affect,
    estressData$withdraw,
    bootstrap = TRUE, B = 10000,
    which.boot = "BCa")
```

[1] "Bootstrap resampling has begun. This process may take a considerable amount of time if the number of replications is large, which is optimal for the bootstrap procedure."
Example 1: MBESS Bootstrapped Indirect Effect

- The object ‘results1’ contains a lot of information
 - M on X regression table and model fit
 - Y on X and M regression table and model fit
 - Bootstrap results
 - Measures of indirect effect
 - Residual based indices

- Example 95% confidence interval for indirect effect

```r
#Ask for first row of the Bootstrap.Results
# which contains estimate of indirect effect
results1$Bootstrap.Results[1,]
```

```
Estimate  CI.Lower_BCa  CI.Upper_BCa
 0.13296411     0.07615661     0.20867695
```
Example 2: Multiple Mediators Model

- What if you are interested in more than one predictor (X), mediator (M), or outcome (Y)?
Multiple Mediator Models in R

- **MBESS** only allows simple mediation
- *mediation* can support multiple mediators, but use caution
 - `mediations()` was not designed to correct for issues of multiple testing
- *psych* `mediate()` allows for simple or parallel mediation
 - Currently, function is beta version
- Recommendation: analyze with a multivariate modeling package
 - *lavaan* (Rossel, 2012)
 - *open-mx* (Boker et al., 2011)
 - *sem* (Fox, Nie, & Byrnes, 2014)
Example 2: Multiple Mediators Model via \textit{lavaan}

Specify the model

define example2 <- '
 ## regressions
 m1 ~ a1*x1 + x2 + x3
 m2 ~ a2*x1 + x2 + x3
 y1 ~ b1*m1 + b2*m2 + x2
 ## define indirect effects
 ind1 := a1 * b1
 ind2 := a2 * b2
 totalind := ind1 + ind2
 ## correlated residual variances
 m1 ~~ m2
'
Example 2: Multiple Mediators Model via lavaan

- Use sem() to analyze the model

results2 <- sem(example2, data = ex2, meanstructure = TRUE, se = "boot", bootstrap = 10000)

- Use summary() to view results

summary(results2, fit.measures=TRUE, standardized=TRUE)
Moderation occurs when the effect the predictor (X) on the outcome (Y) depends on the moderator (Z)

Depending on Z, X to Y changes in strength

$$Y = b_0 + b_1 X + b_2 Z + b_3 XZ + e_y$$
Moderation Analysis in R

- R is preloaded with several important functions
 - `lm()` is used to fit linear models in R
 - `aov()` can also be used for ANOVA designs
- `rockchalk` (Johnson, 2015) offers a variety of helpful functions
 - Simple slopes plots
 - Test simple slopes
 - Generate regression results tables
Example 3: Continuous x Continuous Interaction

- The following example data (epi.bfi) comes from the psych package (Revelle, 2012)
- \(N = 231 \) undergraduate students from a Midwest school
 - bdi = Beck Depression Inventory
 - epiNeur = Neuroticism from Eysenck Personality Inventory
 - stateanx = state anxiety
- Can depression be predicted by one’s prevalence of state-based anxiety and neuroticism?
- Does relation between neuroticism (X) and depression (Y) depend on state-anxiety (Z)?
First, load the `psych` package and retrieve our example data.

```r
# make sure psych package is installed, then load package
library(psych)

# the epi.bfi dataset is now present and we could check it by calling
# head() displays first six lines of dataset
head(epi.bfi)
```

<table>
<thead>
<tr>
<th></th>
<th>epiE</th>
<th>epiS</th>
<th>epiImp</th>
<th>epilie</th>
<th>epiNeur</th>
<th>bfagree</th>
<th>bfcon</th>
<th>bfext</th>
<th>bfneur</th>
<th>bdi</th>
<th>traitanx</th>
<th>stateanx</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>18</td>
<td>10</td>
<td>7</td>
<td>3</td>
<td>9</td>
<td>138</td>
<td>96</td>
<td>141</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>16</td>
<td>8</td>
<td>5</td>
<td>1</td>
<td>12</td>
<td>101</td>
<td>99</td>
<td>107</td>
<td>116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>143</td>
<td>118</td>
<td>38</td>
<td>68</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12</td>
<td>6</td>
<td>4</td>
<td>3</td>
<td>15</td>
<td>104</td>
<td>106</td>
<td>64</td>
<td>114</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>14</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>115</td>
<td>102</td>
<td>103</td>
<td>86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>15</td>
<td>110</td>
<td>113</td>
<td>61</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
Estimate the model with an interaction between state anxiety and neuroticism

#lm() function format is y ~ x*z  
#Using '*' between variables tells R to estimate main effects and interaction

example3 <- lm(bdi ~ stateanx*epiNeur, data=epi.bfi)
Contionous x Continous Variable Interaction

- `summary(example3)` displays model results
  - Subset of `summary(example3)`

|                  | Estimate | Std. Error | t value | Pr(>|t|) |
|------------------|----------|------------|---------|----------|
| (Intercept)      | 0.064    | 2.1856     | 0.029   | 0.9768   |
| stateanx         | 0.038    | 0.0606     | 0.619   | 0.5368   |
| epiNeur          | -0.148   | 0.1887     | -0.782  | 0.4347   |
| stateanx:epiNeur| 0.015    | 0.0047     | 3.279   | 0.0012   |

- We have a significant Neuroticism X State Anxiety interaction
- We can create a simple slopes plot to examine this closer
Simple Slopes Plot with *rockchalk*

Specify what values of the moderator state anxiety (modx) you would like to use to examine the relationship between neuroticism (X) and depression (Y)

```r
library(rockchalk)
#To plot simple slopes, we can use the plotSlopes() command.
plotSlopes(example3, plotx="epiNeur",
modx="stateanx", modxVals="std.dev.")
```

Alternatives:
- `modxVals = "quantile"
- `modxVals = c(###, ##, ##)`. Replace ### with your desired values
Simple Slopes Plot with *rockchalk*

Attaching package: 'rockchalk'

The following object is masked from 'package:MASS':

```r
mvrnorm
```

![Simple Slopes Plot Example](image-url)
We could add a 95% confidence interval around our simple slopes!

Use plotCurves()

```r
plotCurves(example3, plotx="epiNeur",
modx="stateanx", modxVals="std.dev.",
interval="confidence", main = "Simple Slopes Plot Example")
```
Simple Slopes Plot with *rockchalk*

**Simple Slopes Plot Example**

- **epiNeur**: $m - s$ (black line), $m$ (red line), $m + s$ (green line)
- **bdi**: 0, 5, 10, 15, 20
- **epiNeur**: 0, 5, 10, 15, 20

- **Stephen D. Short (College of Charleston)**
- **Mediation and Moderation Analyses with R**
- **Saturday, February 28, 2015**
Final Tips

- Loading multiple packages in one R session may “mask” certain functions.
  - Ex: `psych` package loaded, then you load `mediation` package

  "The following object is masked from 'package:psych': mediate"

- Use a "::" to use mediate() function from `psych`

  
  ```
 psych::mediate(y, x, m, data)
  ```

- Load packages of most interest last
- Use the `search()` to see order R will search for objects
Final Tips

- Try out new packages on example data first
  - Replicate previous results
- Check for package updates

```
update.packages(c("MBESS","rockchalk"))
```

- New packages are always becoming available
  - or you can create your own!
Thank You!

Stephen D. Short, Ph.D.
Department of Psychology
College of Charleston
shortsd@cofc.edu

For slides and code please visit http://stephendshort.wix.com/psyc